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Abstract —A simple recursive algorithm which considers only two concentric evlinders at a time is
presented in order to caleulate five effective elastic constants and two linear thermal expunsion
coetticients for a uniaxially aligned composite which contains an arbitrary number of coutings on
its fibers. The micro stresses and the micro displacements are determined under combined applivd
radial and axial load and temperature change. During compesite fubrication. each coating can be
processed at a different temperature so that the zero-thermal-stress temperature s not unique for
the compuosite. When Tayer properties vary with load and temperature, an incremental recursive
analysis can be done by adjusting the zero stress temperatures at cach step in order to induce initial
stresses. The material for cach constituent is assumed to be transversely isotropic with its axis
oriented in the tiber direction. Approximate expressions for the equivalent axial and the transverse
shear maoduli are given in order to replace effectively two concentric cylinders with a single homo-
genvous cylinder. It s shown that the effective shear modulus of two concentric eylinders measured
from a torsion test does not correspond to any of the effective shear moduli. The three remutining
effective clastic constants amxd the two thermal expansion coetlicicnts for two cylinders are the same
as those given for a two-phase composite. The recursive method is applicd to a titanium matrix
composte reinforced with CVD SiCfilaments (AVCO SCS-6). The inhomogencous structure off
the tiber is shown to imtluence the stress distribution and the composite clastic propertics.

INTRODUCTION

A recursive clastic solution method can be outlined for uniaxial composites similar to the
wiy in which the composites are processed. The liber bundles in a composite are couted
prior to the introduction ot the matrix material. If multiple coatings are used, then cach
Layer may be introduced at a different temperature ; the final step being the processing of
the matrix at its own processing temperature,

In general, the microstresses are non zero within the multiple coatings at the matrix
processing temperature. Therelore, a single composite thermal set temperature may not
exist tor all the constituents. The stress distribution becomes even more complex when
intrinsic stresses are introduced during manufacturing. Deposition stresses can arise from
CVD, PVD or plasma-spraying processes.

The approach in this paper iy as follows. Each coating layer is approximated as a
hollow cylinder, the innermost fiber being solid. We begin with the innermost two cylinders
and then move outwards, while replacing the coating and the fiber assembly underncath
with an equivalent homogencous transversely isotropic solid cylinder at each step (Figs |
and 2). The effective elastic properties of this equivalent cylinder are calculated from the
well known expressions in the literature {Christensen, 1979 ; Hashin, 1979) which are given
for a two-phase composite. This process is repeated until all the coatings are assembled
into the main fiber. The final step is the addition of the matrix.

After this replacement procedure, the stress determination problem for multiple coat-
ings is essentially reduced to the problem of a single homogencous transversely isotropic
fiber. The boundary conditions on the matrix govern the stresses in the matrix and the
effective stresses and the effective displacements in the fibers. The effective stresses and the
cffective displacements are defined only for the equivalent homogencous cylinder ; however,
the resulting interface stress and the displacement values are actual quantitics and act as
boundary conditions for the next concentric cylinder assembly underncath. The matrix
layer is ignored for the next solution step. because its cffect is built into the boundary
conditions. In this manner, the analysis progresses inwards until the inncrmost fiber is
utilized. Thus. all microstresses and micro-displacements are calculated.
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Fig. 1. The fiber is composed of ¥ concentric luyers. The matrix is approximated as a cylindrical

jacket around the fiber and numbered &+ 1. The effective radius ry , , for matrix is caleulated from

(3. Layer ¢ is free of residual stress at temperature 7, in the absence of the outer layers. The
innermost core is numbered 1.

CONCENTRIC
CYLINDER

ASSEMBLY i-t LAYER

Fig. 2. Determination of the effective elastic constants in a recursive manner involves the replucement
of the inner Liyers (shaded region) with an equivalent homogeneous transversely isotropic tiber and
subsequently the addition of another layer,

BACKGROUND

The derivation of elasticity solutions for concentric cylinders is straightforward, A
four-concentric-cylinder model is presented by Mikata and Taya (1985) for axisymmetric
deformations. The four-cylinder model in Mikata and Taya (1985), together with a two-
cylinder model, are used in Mikata er al. (1987) to determine the thermal residual stresses
at two different steps during the fabrication of a Ni-coated carbon fiber composite. Some
typographical errors in Mikata and Taya (1985) are corrected in Mikata er a/. (1987). The
solution for pure shear loading of two concentric cylinders is given by Christensen (1979),
assuming unit shear loading of the composite at infinity. The solution in Christensen
becomes valid for transversely isotropic constituents, if we make the following slight change
in the definition of the elastic constants:

n=1+2u/Ky, (1a)
N = 1 + lel_\,ln/l\'l im (l b)
He = ; +2ﬂ:3'fjf\‘:x‘(< (iC)

The notation in {la)-(lc) is that of Christensen (1979) and is different than that of this
paper. The quantities 1., 1, and e are the elastic constants of the composite (outer cylinder),
the matrix (middlc layer) and the fiber (inner core) respectively, and appear in expression
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(3.14) in Christensen for the in-plane shear modulus. The single-valued transverse shear
modulus in Christensen is derived for composites made with isotropic constituents. The
extension to the case of the transversely isotropic constituents is done by simply redefining
the elastic constants #, n; and n,,, as done in (1a)-(lc).

Two recent papers by Pagano and Tandon (1988. 1989) present quite general non-
axisymmetric solutions for an assembly of three concentric cylinders. The solutions in
Pagano and Tandon are based on Pagano’s original paper (1972).

A multiple-coated uniaxially aligned fiber composite has five independent effective
elastic constants and two lincar thermal expansion coefficients. provided each phase is either
isotropic or transversely isotropic with its axis aligned along the fiber direction. Exact
predictions for the four elastic constants of a two-phase composite, namely the axial Young's
modulus £*, the axial Poisson’s ratio v*, the axial shear modulus G*, the transverse bulk
modulus k. are given by Christensen (1979) for isotropic constituents (with reference
to other literature) and by Hashin (1979) for transversely isotropic constituents.
The expressions for the two effective lincar thermal exparsion coefficients are given in
Christensen or Hashin for isotropic constituents ; however, with some work the reader
can obtain the transversely isotropic case.

Close upper and lower bound valucs tor the remaining fifth elastic constant, namely
the in-plane shear modulus GT, are provided by Hashin (1979) for a two-phase composite.
A single valued in-plane shear modulus is given in Christensen (1979) for a two-phase
composite.

The expressions given in the literature for the three effective clastic constants £, v,
& and the two thermal expansion coetlicients can be used effectively 1o replace two concentrice
cylinders with an equivalent homogencous solid cylinder, although these expressions were
derived for a two-phase composite where the inner phase is fincly dispersed within the outer
layer. The expressions for the remaining two clastic constants, namely the in-plane and the
axial shear moduli 7 and G, which are provided by Christensen ((1979) and Hashin
(1979), arc valid only when the inner phase is in the form of finely distributed cylinders.
These expressions are not accurate for the replacement of two concentrie cylinders with a
homogencous cquivalent. More accurate, but still approximate expressions tor the effective
axial and in-plane shear moduli are derived elsewhere and will be given here for the recursive
algorithm, 1t should be noted that the overall torsional shear modulus is ditferent than the
effective axial shear modulus for concentric eylinders. This is discussed in Appendix C of
this paper.

EFFECTIVE ELASTIC CONSTANTS

As mentioned carlier, a uniaxially reinforced composite is considered to be transverscly
isotropic with five effective constants and two linear thermal expansion coefficients. The
axial and the transverse Young's moduli are denoted by £* and £, respectively. The lateral
deformation in the plane of the isotropy is governed by v* when load is applied in the axial
direction, and by v' when load is applied in the plane of the isotropy. When shear stresses
are applied parallel to the material axis, the governing shear modulus is denoted by G*.
The remaining shear modulus G governs the response when the shear stresses are applied
in the plane of the isotropy and is related to the Young's modulus ET and the Poisson's
ratio v' in a manner similar to the isotropic materials. Another clastic constant which is
dependent on the other five independent elastic constants is the transverse bulk modulus &
(not to be confused with the bulk modulus & for isotropic materials) and given by Hashin
(1979)

2k = EY/(1+v"=2(vA)ET/EM). )

For incompressible materials, the transverse bulk modulus & is infinitely large. A
transversely isotropic material possesses two linear thermal expansion cocflicients. The
expansion cocfficients in the axial and transverse directions are denoted by a2 and «7,
respectively.
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The tavers are numbered. beginning with the innermost fiber (Fig. 1), Innermost tiber
is numbered 1. the adjacent coating 1s numbered 2. the next laver 3. ete. : finally the matrix
being numbered ¥+ 1. Excluding the innermost fiber and the matrix phases, the number
of coatings 1s accordingly V— 1. The outer radius of each coating laver is denoted by r.
where the subscript i denotes the laver number. Thus. the outer radius of the innermonst
fiber is ri. An effective radius for the matrix s caleulated from the specified matrix volume
fraction 1™ as follows:

i

DRI . (

where ry is the radius of the fiber including the thickness of all the layers of the multiple
coatings.

In general. a superscript e will indicate that the svmbol refers to an effective property.
If o quantity has the superscript "¢, such as £, then the subscript i will refer to the
number of coatings which have been incorporated tnto that property. On the other hand,
the symbol £ without the superseript “e™ refers to the material property of the ith layer.

The etfective properties for layer |are set to be equal to the respective properties of
the innermost fiber. For two or more fayers, &' > 1. the effective properties are given below,
The range of the tndex 7 is. i =2, N+ 1 Fiest, we define a number of quantitics tor
nuathematical convenience:

f ={r, (/nr)" (B3]
Ey=fEN +(0 - (5)

The term f; iy (4) is the relative volume fraction of the (7~ Dth eylinder with respect to the
ith layer.

Transverse bulk modulus:

kAKS CH GO Sy kS (kGO

AV = . . . g 0
(ki G =LY +Hh +GD o
Axid Young's modulus:
~ 4 _;\u b_\,;\)::(!__‘ {)
Py A (7)
(T=f)/k7 1k + 1G]
Axial Poisson’s ratio
IRt T Iy O N SN VA e
= =Ly S (8)

(L=f VKD ik, + 1G]}

The effective axial and the in-plane shear meoduli of two concentric solid eylmders are
derived by replacing a concentric cylinder assembly with an equivalent transverscely isotropic
homogencous cylinder embedded in an clastic composite and subjecting the composite to
homogencous boundury conditions. If the inner phase is finely dispersed in the outer layer,
then the expressions provided by Christensen (1979) and Hashin (1979) which are given in
Appendix B should be used instead of the expressions given below.

Axial shear modulus:
GN =GN+ 2MUG =GN (/. (V)

Transverse shear modulus
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GF/Gl —1 = (—B+ /B ~AC)/A (10)

where the quantities 4, B. and C are given in Appendix A in terms of the elastic properties
and volume fractions of the inner and the outer layers. Numerical experimentation with
the expressions in (10) and (A 1)-(A13) shows that the "+ sign is valid when the jnner
phase is stiffer (7. > 1. G| > G[) and the "~ sign is valid when , < L. Gl <Gl
Thermal expansion coefficients do not pose any difficulties and are given below.

Axial thermal expansion coefficient :

= [LEM S + (1 =LEMMNEN+ (P +PDig
P = HEN =2 S =N =G TR [ENY =)+ EX v L) Eq
P =4 =) (L= =G TRAT
q = Ex[kkE (+GTk (1 =f) ki D] +H4G Tk K (v — v (1 =1). (n

Transverse thermal expansion coeflicient :

=2+ (pl PNy
= (| —a K SiIlEAR,AGH +3(L = OKG (v =)
= (1 =V [LEAGk 4+ G v (4L =fDGTR KT vl (v} =)
R At (CH TS A R (Y A S CAT T A ROy 8 1) B B

For the reader who is interested in the propertics of two concentric cylinders only, the
above complicated set of subscripts and superscripts can be simplified drastically, if we keep
in mind that combination of the subscript i — 1 and the superseript “e” refer to the propertics
of the inner cylinder, whereas the subscript 7 refers to the properties of the outer cylinder
(Fig. 2). The relative volume fraction /, in (4) is excluded from this rule.

In the above set of equations we gave the expressions for five independent elastic
constants and two thermal expuansion coeflicients, The remaining elastic constants are
determined from

EV = 3kGY[(k +m* GT) (130)
= (k—m* GHY/(k+m* G") (13b)
= | +4k(y*)/ED. (13¢)

For the sake of simplicity, we dropped the superscripts “e™ and the subscripts i,

STRESSES AND DISPLACEMENTS UNDER AXISYMMETRIC LOADING

In the previous section we indicated that the determination of the effective elastic
properties is an outwards process, namely the successive replacement of the inner concentric
cylinders with their equivalent homogencous solid cylinders until we arrive at the matrix
phasc. The determination of the displacements and the stresses is similar, except now we
move inwards. With this recursive approach, we need to solve a two-concentric-cylinder
model at each step (Fig. 2). The solution for a two-concentric-cylinder model can be found
casily : sec Lekhnitskii (1981) or Mikata and Taya (1985) among others (sce the latter for
the governing equations).

The symbol T, denotes the temperature at which the ith layer has been introduced over
the inner concentric cylinders in a stress-free manner. In other words, the ith coating is free
of thermal stresses at the temperature 7, in the absence of the outer coating layers and
the matrix. The temperature 7T, called the “set™ temperature, is the zero thermal stress
temperature for the two-concentric-cylinder assembly. From a computational point of view,
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the temperature T, is a convenient reference for the two-concentric-cvlinder assembly
from which the displacements can be calculated by applying the displacement boundary
conditions at the interface. However, from a practical point of view, it is confusing to have
the displacements of each layer with respect to a different temperature T, in the final solution
for all the concentric layers. To remedy this situation, (i) we solve the two concentric
cvlinder model by assuming that the thermal strains and the displacements are zero at the
reference temperature 7,: and (ii) subsequently. we subtract the thermal strains and the
thermal displacements so that all layer strains and displacements are calculated from the
current temperature T, at which the composite is being used. Note that the stresses are not
affected by this procedure. Combining these two steps. the displacements and the strains
are given below with respect to the current temperature T,

Displacements
W =Dr+Dr—u" (14)
=0 (15)
u = Dx—u" (16)
where
ut =2 (T=T)r (17
Wt = aMT=T)x. (18)

Lower cuse "t is used as a superseript to distinguish thermal displacements.

Strains
& =d =D = Dyr =2 (T=T) (19)
= ur =D+ D,y rr =2 (T-T,) (20)
= = Dy (T=T)). (21)

All shear strain components are zero.

Stresses
o = C((D;—e)+2C (D, —¢") (22)
0" =2k(D, —¢€)=2G"D,y/r*+C\(D;~¢") (23)
6" = 2k(D, —€¢)+2G Dy /r* +C,(D;—¢") (24

where

C\\ = EN+4k(vY)* (25a)
Ci. =2k (25b)
¢ =a(T-T) (26a)
e =oaMT—T). (26b)

For the sake of simplicity we did not use superscripts or subscripts in (14)-(26b) to
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distinguish the inner and the outer cylinders. Similar to the previous section, we will
designate the properties of the inner cylinder by a combination of the superscript “'e¢” and
the subscript i— 1. The properties of the outer cylinder are denoted by the subscript i. The
new terms in (14) and (16) include the radial and axial thermal displacements «™ and u*
respectively. The constants D,. D; and D, are to be determined from the boundary
conditions. The corresponding sets for the inner and outer cylinders are denoted by D, _ .
D%, _,.D5%;_,,and D, D;,;. D;,, respectively. The elastic constants for the inner and the
outer cylinders C5,;_,, Ci2;-,, and C,;,, C,:,; are expressed in terms of the previously
defined elastic constants k, E* and v* by adding the corresponding superscripts and the
subscripts to (25a) and (25b). By a similar addition of the subscripts and superscripts the
definition of the inner and the outer cylinder thermal strains €/ ,, ¢/, and ¢, € can be
obtained from (26a) and (26b).

Since the inner cylinder is a solid cylinder, the radial displacement «* | is zero at the
center where r = 0. This condition leads to

Ds,.,=0. 27

Thus, the inner phase transverse shear modulus G, in (23) and (24) does not enter the
calculations. Continuity of axial displacement at the interface at r = r;_,

u At =l e, (28a)
yiclds
D,,=D5, . (28b)
Continuity of radial displacement at r = r, ,,
W =l e, (29a)
gives
Dyri +Dsfr, . =D5, 1, . (29b)
Continuity of radial stress at r = r,_ |,
of =07, (30a)
gives

2k, (D, =€) =2G Dy, [r}.\ +C\2,(Dy,—€Y)
=2ki (D5, =€)+ Cayn (DS, - —€5 ). (30b)

Radial applied stress on the outer surface at r = r,,
¢ =o', (3la)
gives
0" =2ki(D\,—€)~2GD,,[r}+C ,,(Dy,~€}). (31b)

Axial applied stress at infinite distance
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oMl =f)+a f = o™ (32a)
gives

o' = f[Ch. (D5, =€ )+2C, (DS, —ef )]
“(1=[C 1 (D, —e)+2C (D), —~¢D)]. (32b)

As we change the subscript i from N4 1 to 2. for each i we solve the five equations
{28b). (29b). (30b). (31b) and (32b) for the five unknowns D,,. D.,. D,,. D5, ., and
D%, 1. This recursive process is initialized by using the applied axial stress ¢ and the
applied radial stress ¢ on the composite:

S = o (33)
(Tr\r'ck| = g (34)

The effective stresses, the effective displacements and the effective clastic constants of
the innermost cylinder are the same as the actual quantities. 1t should be noted that the
quantity D, in (28b) is constant tor all the phases and represents the actual axial composite
stramn as measured from the matrix set temperature 7y, . under combined load and
temperature change.

The recursive method is tncorporated into a Fortran computer program so that para-
metric studies can be done casily using a range of realistic material property values.

CVD SiC FIBERS IN A TITANIUM MATRIX COMPOSITE

The matertal considered in this section is a titanium matrix composite reinforced with
CVID SCS-6 SiC filaments which are manufactured by Textron (formerly AVCO). The
cffective elastic propertics of the fiber by itself as well as those of the composite, together
with the microstresses and the displacements, are calculated using the recursive cylinder
approach. The matrix material is Ti-6A1-2Sn-4Zr-2Mo. Previous micromechanical work
on this composite has been detailed by Nimmer er af. (1989). Detailed microstructure of
the SiC fibers is given by Nutt and Wawner (1985) ; further microstructural information
and property measurements are given by Brun and Borom (1989), Siemers ¢t al. (1988)
and DiCarlo (private communication), among others. SCS-6 filaments are produced by
depositing f£-SiC onto an approximately 36-pm-diameter carbon core up to a diameter of
approximately 137 gm. The inner carbon core is isotropic and carclully chosen to match
the thermal expansion ol the SiC layer; however, the measurements of DiCarlo indicate
that this may not be the case. Nevertheless, the influence of the core is not significunt
because of its relatively small radius and the volume fraction. On top of the SiC layer are
introduced two layers of carbon-rich silicon carbide finish, cach 1-1.5 ym thick. Thus, the
final diameter of the fiber is approximately 142 gm. The two outside coatings show variation
from batch to batch in their composition. The batch studied by Nutt and Wawner (19853)
seems to contain preferentially oriented pyrolytic carbon in the first layer of the outside
coatings. and the second layer is mostly isotropic carbon. However, other batches include
some SiC on the outside as well as the inner layer (DiCarlo, private communication).

Qur primary purposc is to demonstrate the uscfulness and the capabilitics of the
recursive approach, Exact mechanical propertics of the individual layers within the fiber,
especially those of the outer coatings, can only be guessed from the microstructural obser-
vations. Because of the lack of proper material data the propertics used in this section
represent the best guess of this author and should be used with caution. Parametric studies
(this will not be done here) can be done using a range of realistic material property values
in order to gain some insight.
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Fig. 3. The structure of the CVD SiC fiber. (a) Cross section of the fiber with carbon-rich coatings.

(h) The composition of the external coating from DiCarlo (privitte communication). The ratio of

Si to C in the outer tiber layer is plotted against the radial distance from the external surface of the
tiber. The idealized model assumes that the coating region can be divided into three layers.

The idealized SiC fiber structure is shown in Fig. 3 and the assumed values for the
constituent material propertics are given in Tables | and 2. The material properties are
assumed to be elastic and constant over the temperature range. Matrix volume fraction
(1) is 0.72, Because of the presence of pyrolytic carbon we assume that the first of the

Table |. Composite matertal data

Outer Relative  Young's Shear Thermal

radius volume mod. mod. expansion Set
Constituents r fraction E} G! oA temp.

i (um) (f) (GPa)  (GPa)  (1/'Cx10"  (C)

cvD 1 Curbon core I8 — 50 20.8 4.5 —
SicC 2 SiC sheath 68 0.070 430 179 4.5 1300
Fiber 3 Loat l 69 0971 300 41.7 4.7 1300
4 Coat. 2 70 0.972 400 833 4.5 1300
S Coat. 3 71 0.972 300 208 5.0 1300
Matrix 6 Ti-6Al-2Sn-4Zr-2Mo 134.2 0.280 95 36.5 11.0 820

All phases are tsotropic except layers 3 -5 (see Table 2).
All Poisson’s ratios are 0.2, except vy = 0.3 for matrix.
Matrix volume fraction is ', = 0.72,

Table 2. Material data for anisotropic layers 3-5 in Table |

Property Layer 3 Layer 4 Layer §
ET (MPa) 100 200 50
G} (MPa) 68 148 40

vt 0.2 0.2 0.2
W 0.2 0.2 0.2
k, (MPa) 65 132 32

' (1 Cx 10%) 5.0 4.5 5.0
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Table 3. Calculated ctfective propertios for the composite

Number of Young's moduli  Shear moduls Thermal expuansion

lasers GPa GPa Porsson's ratie f C< M
1 E‘\u E‘-: « e (Iv:; X VN 1\; zy.;
CVD SIC Fiher 2 403 RN 138 I 0y 020 450 4.50
3400 297 137 1l 0333 020 430 4.5t
4 3 2ud 136 ih 1330 020 450 451
3398 274 133 N TRUN 0.20 452 432
Muatrix (Te6AR2Sn-420-2May 6 (80 126 SEX 160 [RE 1268 T 938
For matrix phase. egns (AT (A27y in Appendix B are used
Table 4. Bounds on clastic constants iHashin, 19™)
i Ehu EI i (’.xnu (’-Y i ;z 1 Yiv-x
2 372 07 154 156 0.222 0212
3 Is2 347 143 142 0.223 0.213
4 kR 1) 341 142 140 0.223 0.203
5 3o 306 127 125 0.226 0.216
6 130 128 0 RES 0326 0.312
Comparison with Table 3 shows that the effective moduli for two
concentric evitnders are outside of the range detined by Hashin (1979,
The in-plane modult caleulated by recursne application of
Christensen’s vatue is within these bounds. Modub are n GPa
Table 8, Displacements and axsd strinx at 772 20 Cand 77 - 1020 O
[ R oo o
Radial disp. Al Radial disp Avsal
Layer ' at strinn o stran
' ror o, r o IARATIN T [ PRI
H (.0000 S0.0129 3. 208 [ERE Y]] Q0032 .05
2 a0l L0049 - 0.208 [IRE TR {0023 051
3 HXIAES) 0121 0182 XN 0.4 23 0087
4 00121 -0.0128 ~4),208 0.00263 0.00284 0.051
s 0.0320 (.0260 -0, 144 00126 00138 0063
6 0,351 0.152 0,313 (LONTHR 00381 (L0778
All displucements are in gt The matelx set temperature 820 O

outer coatings on the fiber is slightly anisotropic with its stitt axis aligned in the fiber axial
direction. The sceond outer coating is assumed to be isotropic and softer than SiC because
of the presence of carbon. The third layer is similar, except that it is even softer because of
the higher carbon content. The material properties of the titanium matrix and those of the
SiC arc chosen in the temperature range of 200 400 C. The set temperature for the titanium
matrix and the fiber is below 900 C. Because of the possibility of time-dependent defor-
mation we choose u slightly lower value, 7, = 820 C. W assume that the current tem-
perature is 7 = 20 C and the applied radial and axial stresses on the COMPOsite are 7ero.

The effective clastic properties listed in Table 3 tor the successive layers are caleulated
by using (4) {13¢) ina recursive manner, For the outermost layer (7 = 6), which corresponds
to the titanium matrix, the effective shear moduli G and G 1 are caleulited by using the
expressions (A14) -(A21) in Appendix B for composites. rather than the concentric eylinder
relations in (9) and (10). For comparative purposes. the bounds on the elastic constants
arc calculated by the recursive application of expressions (A22)-(A27), which assume that
the inner phasc is finely dispersed within the outer layer. These bounds are given in Table
4. The caleulated values for the in-plane shear moduli from the recursive application of the
Christensen’s two-phase shear modulus in (A15)-(A21) are within the bounds given in
Table 4.

The radial displacements and the axial strains are given in Table Sat T = 20 C and
T = 1020 C at the inner and the outer radii of cach layer. The radial, hoop and axial stress
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Fig. 4. The thermal stresses in the SiC fiber/Ti matrix composite as a function of the radial distance
from the center of the fiber, The fibers are under axial compression whereas the matrix is in axial

tension at room temperature. (a) Radial stress. (b) Hoop stresses. (c) Axial stresses. The elastic
constants are assumed to remain constant over the temperature range 20-1020°C.,

distributions, ¢™, ¢% and ¢*, are plotted as a function of the radial distance r in Figs. 4a~
¢. The predicted values for T = 1020°C may not be realistic because of the possibility of
time-dependent deformation. The values for the radial displacements «{ and the axial strains
in Table S have discontinuous values—with the exception of the interface between layers |
and 2; however, this does not mean interface continuity is violated : see (29a). The dis-
continuity arises because the displacements are referred to the current temperature T, which
is different than the “set™ or “zero stress™ temperatures 7, for the layers. The displacements
3A8 29:2-r
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in Tuble 5 represent the actual displacements that the individual Tayers will undergo if all
the layers are suddenly decoupled from one another at the current temperature 7. These
displacements are a measure of the amount of “shrink fit™ between the Layers at the current
temperature 7.

DISCUSSION

The presented recursive method can easily be converted into a computer algorithm to
solve an arbitrary number of concentric eylinders. The modet can be used to caleulate tive
effective elastic constants and two thermal expansion coellicients of a uniaxially aligned
compostte which contains an arbitriry number of coatings on its fibers.

The validity of the recursive method can be ascertained in two ways, First, the predicted
results from the recursive method can be compared with. those obtained from the multiple-
cylinder solutions, such as the ones given in Mikata and Taya (1985) and Pagano and
Tandon (1988). The second method involves dividing one of the layers in an N-layer
compositc into two sublayers although the actual composite contains only A distinet layers.
If the recursive method is to be exact, then the predicted results which are obtained with
N+ 1 fictitious layers must be identical to those obtained by using N layers,

Application of both methods reveals that the stresses and the displacements calenlated
from the recursive method are exact for axisymmetric deformations that are independent of
the axial direction. Furthermore, three of the elastic constants-~the cffective axial Young's
modulus £, the axial Poisson’s ratio v, and the transverse bultk modulus & -and the
two thermal expansion coefficients 2™ and «' can be calculated exactly for a uniaxial
composite. However, as Table 6 shows, the effective axial and the shear moduli G* and
G cannot be calculated exactly. In Table 6, we tried to maximize the error which is
represented by the difference in the values calculated using 6 and 7 layers. Actual error for
the 6-layer composite is probably less. Dividing the layers further increases the crror,

The expressions for the effective axial and the shear moduli G* and G ' given by (9)
and (10) are only approximately valid for replacing two concentric cylinders with a single
homogeneous cylinder, These expressions are derived from a model that consists of two
concentric cylinders embedded in an infinitely large medium that undergoes homogeneous
deformation at infinite distance. All three phases are assumed to be transverscly isotropic.
The expressions given by (9) and (10) are determined by effectively replacing the inner two
cylinders with a single transversely isotropic homogeneous cylinder. such that the stresses
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Table 6. Check for accuracy of recursive method

Jlayers 4dlayers 5layers 6 layers 7 lavers

G 7-layer 79 78 78 76 “
6-layer 14 11 1 105 47
G T-layer 152 151 51 149 5t
6-layer 158 157 156 155 52

Layer 2 in Tuable | is divided into two parts at radius r, = 43 um, so
that the composite is regarded to consist of 7 layers, rather than 6. The
material constants for the new layers 2 and 3 are identical. The predicted
results by using 7 layers are identical to those given in Tables 3 and 5.
except the values of the effective elastic constants G, G, ET* and v".
The estimated values for the effective shear moduli are given above in units
of GPa. The difference represents error.

and the displacements in the infinite outer medium remain unchanged. [t is expected that
the recursive method will not be exact for general shear loading. since the expressions in
(9) and (10) are derived under special loading situations.

The expressions for the effective axial and the shear moduli G**and G™ given by (9) and
(10) arc different than the expressions (A14)-(A27) derived for composites (see Appendix B)
where the inner phase is assumed to be finely dispersed within the outer layer. In general,
the predicted shear moduli from (9) and (10) are higher than the upper bounds for the
composites. when the inner phase is stiffer than the outer phase. When the inner phase is
morc compliant, then the shear moduli for the concentric cylinders arc lower than the lower
bounds for a composite (compare the values provided in Table 3 and Table 4). [t is possible
to derive upper and lower bounds for the effective axial and the shear moduli G and G
for the recursive procedure. By using the bounds for the effective shear moduli it is possible
to obtain limiting solutions for the microstresses and microstrains for nonaxisymmetric
deformations. Recursive application of the lower bound for the shear moduli produces one
limiting solution, whercas the upper bound vilue produces the other limiting solution. The
difference between the predicted stress and displicements from the two cases represents the
possible maximum crror one may commit using the recursive method.

Although shear modulus measurements on the fibers are performed using torsion tests,
the fibers inside & homogencously deforming composite do not twist around their own axes.
For a homogencous transversely isotropic fiber, the shear modulus that is measured from
a torsion test is the same as the fiber axial shear modulus G*. However, for an inhomo-
geneous fiber the overall torsional modulus that is determined by a simple torsion test does
not correspond to the effective axial shear modulus G*¢ for the cylinder assembly. The
overall torsional shear modulus for any number of concentric cylinders can be determined
by the recursive application of eqn (A28) in Appendix C. A relationship between the
effective axial shear modulus G* and the overall torsional shear modulus is established in
Appendix Cin terms of the relative volume fractions and the phase moduli.

The zero stress temperatures 7, for individual layers are not necessarily the same as
the temperatures at which the layers are processed. The stresses that result from the
processing, such as the deposition stresses and the thermal stresses, may be relieved because
of time-dependent creep and relaxation. However, the residual stresses are not necessarily
zero when the material reaches @t limit temperature below which stress relaxation does not
occur. If the magnitude of these residual stresses and the value of the limiting temperature
are known, then it is possible to calculate a zero-stress temperature 7, for the layer /.
However, the calculated value may not be a physically realizable temperature, such as above
the melting point or below the absolute zero. The concept of zero-stress temperature,
however, still retains its usefulness for calculating residual stresses in the layers, in the
temperature range in which all constituents in the composite behave elastically.

When the layer properties vary with temperature or applied load—such as plastic
deformation—the recursive method can be applied in an incremental manner for deter-
mining the stresses and the displacements. By successively adjusting the zero-stress tem-
peratures 7T, at each step, the layer stresses from the previous step can be generated as if



210 M. Surcu

they were thermal stresses. The amount of initial stresses to be added to the right-hand side
of the stresses in (22)—(24) is adjusted by varying the terms ¢ and ¢*. The corresponding
zero-stress temperatures T, are governed by (26a) and (26b).

Some other capabilities of the recursive method include the following:

(1) It can be shown that the recursive method can be applied accurately to concentric
cvlinders when there is radial temperature variation. provided that the deformations
are axisymmetric and independent of the axial direction. Thus, it may not be necessary
to solve the more complex four-concentric-cylinder modet presented by Mikata and
Taya (1985) for axisymmetric deformations.

(2) Weak interface coupling can be modeled by introducing a thin “soft™ layer in the radial
direction. i.e. by choosing the transverse Young's modulus much smaller than the axial
modulus. E' <« E*. The thickness of this thin layer should be chosen such that small
variations in the chosen thickness value do not influence the stresses in the adjacent
layers appreciably.

(3) The stresses and the displacements presented in this paper correspond to the applied
traction boundary conditions. When homogeneous displacement boundary conditions
are prescribed. then one can use the effective elastic properties of the composite pre-
scribed in (4)-(10) to calculate the corresponding applied stresses. Subsequently. the
recursive procedure described by eqns (14)-(34) can be applied to calculate the cor-
responding microstresses and the displacements.

() Theexpressions given by (6)-(13c¢) tor the effective elastic constants of a two-concentric-
cylinder assembly are valid when either one ot the layers is made from an incompressible
material. Incompressible materials are characterized by

V= 120 v = L= ET2EN, ko=

With the exception of the transverse bulk modutus A, the expressions (7) (13¢) for the
elfective clastic constants predict finite values when the transverse bulk moduhi &, or k¢,
approach infinity. The effective transverse bulk modulus for a two-concentric-cylinder
assembly approaches infinity when both the inner and the outer cylinders are incompressible.

SUNMMARY

The recursive method developed in this paper is capable of determining stresses and
displacements in concentric eylinders under axisymmetric deformations, when all layers are
lincar clastic and there is interfuce continuity. Only two concentric eylinders are solved at
cach step. Applied axial and radial load as well as temperature change are considered. All
the material properties arc assumed to be transversely isotropic and uniform over the
temperature range. Thermal stresses are properly accounted for by assuming that the set
temperature is different for cach constituent.

Three effective elastic constants —the axial Young's modulus £, the transverse bulk
modulus ¢, and the axial Poisson’s ratio v*—and the two thermal expansion coellicients
2™ and %' can be calculated exactly for a uniaxial composite that contains an arbitrary
number of coutings on its tibers.

The remaining two eflective elastic constants, the axial and the transverse shear moduli
G™ and G " cannot be determined exactly from the recursive method. The exact replacement
of two concentric cylinders with a single cylinder is not possible under shear deformation.
Approximate expressions are given in (9) and (10) for the axial and the in-plane shear
moduli in order to replace two concentric cylinders with a single homogeneous cylinder.
Comparison with the overall torsional shear moduli is made in Appendix C. More work is
needed in order to estimate the error involved in using (9) and (10) in a recursive manner
for computing nonaxisymmetrical elastic solutions.

The recursive method has been applied to a titanium matrix composite which is
reinforced with heterogencous SiC fibers. [tis determined that the relatively compliant layer
of carbon-rich external coating on the SiC fiber provides a gradual stress gradient across
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the interface. This smooth transition reduces stress concentrations at the fiber matrix
interface, thus preventing fiber failure.
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APPENDIX A

fe

The quantities A, B, and ¢ given in (10) for the effective transverse shear modulus G are defined below in
terms of the clastic propertics and the volume fractions of the inner and the outer layers.

A =40+ DAy + 24, (L= WG GT = )+ A, (L= )HGT /GT - 1)? Al

= A+ 1By =28, (G(GT = 1)+ B0 ~£)(GT G - 1)} (A2)

Sl ey~ TR =R 1=/ )G G >

o GG GT ~ 1)+ CH(GIGT - 1)} (A3)
afim+ 1’ R G/,

m = GAr/kr (‘\4)

n =k7—l/kl (AS)

Ao = O +nln 4 fim = D@0 +3=f7=2fIn)l+ /i = 1) (A6)

A = (= D2+8, + i+ 022430, +£,(Bni + 18n] =8, =24 n(6n] + 130} +n,=2))
L0+ By + 9 + 20001 = ) +401,+ DY =L, 0020607 + T +5) + 20,20 47, + 1))
0 =D+ 2004200+ DX+ 20 ) (L =£,4+217) (A7)

Ay = (= DI+ 2000+ 3, +0) + /00 + 21 )3 + 657 =60, =24 0,(2ni + 37, =2))
A0+ 50+ Uhma+ I+, (2 0+ D =L (LR 20) Qs 05, =20)
+(E =)+ D(1+25,)7  (AB)
By = ni(n:=Dn+n)(1 =1} (A9)

B, = Tni+10n,n,~3ni(n, - D=niGni+2n, =4 +2/(n, +0 )2 =57, =3+ 2ni(n.— )]
F4L3 A0 (0D + i = D] =2 0000 = D0 A0 )L+ 200+ 503 =D (AL0)
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APPENDIX B: THE EFFECTIVE AXIAL AND IN-PLANE SHEAR MODULI WHEN INNER PHASE
IS FINELY DISPERSED

When the inner phase is finely distributed within the outer laver then egns (93 and (10} 113R) for the shear
moduli should be replaced by the expressions provided from Christensen (1979) and Hashin (1979) for the effective
shear moduli of two-phase composites,

Axial shear modulus

) GMI—=M+GM 1+
GN o= G o T T T Ald
S R RGN (-1 (Al

Transverse shear modulus from Christensen (19793
GG e B 4G {ALS)
where
R A U T N O N S R IR S N U P N VA |V N U T § R O A B (A16)

B - 30 “/;):(’h DO by b !‘l'lt’l] FOL DL - Dty vy 2000, ’!1).’:‘!

!' 3
L e Wy D e v Opy, o AL

Co= 3 - 0 - Dby = H g, =D L+ Ul s v - n0 £ (AN}
n, = GG ALY

TN S PR S (A2

o o= L4206 k. (A2

The recursive expression tor the single-valued transverse shear modulus in (A15) (A2]) i the modified version
of the expression provided by Christensen, as explained previously (see (1 ¢)). We extracted the physieally
meaningful root from the quadratic given in Christensen in order to arrive at {AIS), The value of G provided
by (A15) is always in between the upper bound vatue GI™ and the lower bound G4 (Hashin, 1979) which are
given below. A superseript “H™ s used to denote an upper bound, and 7L to denote a lower bound. Both the
upper and the lower bounds ¢ and G are initially set to the in-plane shear modulus G of the innermost
core.

Cuse (1)
I0ks | >k GIN > 6T then

GE Gk, + G

. - . L . IA22)
PG G U Sk, 266G~ G !

Grvgl o=

(L+f0s

. Iy {A23)
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xf +1

GIGY = 1+
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’”ﬁ':’::‘ =R S GINGT: B k26D B =KL 26T, (A2

Cuse (if)
Itke , <k : G < G then

200G -Gk +G)

Tell —~T _ a8
GG = I T G £ (1 —)k + 261G =G (A25)
G’TeL G’T =1+ (l+3f’l’)(f f): . (A26)
-/, ]+ _I_;'_>
bt ( /-8,

The quantity f, is given in (A24). The new values for the quantities x, p. §.. 7 are calculated from (A24) by
replacing the superscript “H™ with L. Thus. the new values of 7 and B, are governed by

7= GG By =k KT +2GT). (A27)

APPENDIX C: TORSIONAL SHEAR MODULUS FOR TWO CONCENTRIC CYLINDERS

For the replacement of two concentric cylinders with a single transversely isotropic homogencous cylinder,
the etfective axial shear modulus G is calculated from (9). However, the calculated G is not the overall shear
modulys that can be measured from a torsion test performed on the two-cylinder assembly. The measured torsional
shear modulus would be identical to the axial shear modulus G for a solid homogeneous cylinder. Assuming
shear strain continuity at the interface, the overall torsional shear modulus for two concentric cylinders is given
by

G Moot = GYH G tumona =G ). (A28)

The effective axtal shear moduli for the innermost fiber (¢ = 1) are the same and equal to the axial shear modulus
of material |,

G = G voma = G (A29)

Using the measured vilue of G4 TOM a torsion test on an N-layered cylinder, the torsional shear moduli
G romar fOT suceessive numbers ol inner layers ¢ can be caleulated from (A28) in a recursive manner. Upon
reaching the innermost Layer (1 = 1), the recursive relationship in (9) is used to caleulate the effiective axial shear
moduli G for any number of layers i. With this procedure, the effective axial shear moduli can be caleulated
from experinentally observed values of the overall torsional shear moduli.

When only two concentric eylinders are present (N = 2), then the relationship between the etfective axial and
the torsional sheiar moduli is governed by

et o2+ f)—f (A30)

where £, denotes the volume fraction of the inner (/ = 1) cylinder, and G and G#% are the axial shear moduli for
the inner and the outer cylinders, respectively. The right-hand side of (A30) vanishes for /, = 0 and /, = 1, and
assumes a4 maximum value of 0.42 at /, = 0.46.



