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Ab<itract --A simple re,ursivc algorithm which considers only two concentrk cylinders at a timc is
prcsented in Mder to l'akulate fhe erfel,tive d<lstic constants and two lincar thermal c~p,lnsil,"

Clleftkients f,'r <I unia~ially aligned compositc which contains <In arbitr<lry number of coatings on
its tibers. The micro stresscs <lnd the micro dispklccments are determined under Cl'mbined applied
radial and <I~ial I,'ad and temperaturc change. During compt'site fabrication, ea,h coating can be
pn"-'esscd at a ditlerent h:mperature so that the zcro-thermal-stress temperature is not unique f,'r
the Cl'mp,'slte. When layer pwperties vary with load and temperature, .In incremental rl"Cursive
analysis ,<In he ,IIl1le ny <ld.Justing the 7ero stress temperatures <It e<l,h sll:p in order t" indu,e initi.iI
stresses. The m<lteri<lt f,'r e<l,h ,onstituent is <lssumed to be tr<lnsversdy isotwpic with its ,..,is
oricnted in th, tiner dire,ti'lIl. Appw~im<ltee~pressions for the equivalent a~ial and the transverse
shear moduli arc givcn in ,mler ", repl<lce elfecti.ely two concentric cylindl'rs with a single 110111\1­
cencous cvlimkr. It is shown th<lt the ell""Cti.e she.. r I1H>uulus of two concentric cvlindcrs me..sured
I'rom a h,~sion tl'st ,II'es not correspond to any "f the elfl'ctivo.' she..r nHlduli. Thl' three rem.lining
elkctive dasti, ,onstanh ,Iml the two therm;1I c~pansi'lII cocllicicnts for two cylinders arc thl' same
as th,,,,: given for a two-pliase 'omposite. Tlic recursive mcthod is applied to ,I titanium l11atri,
,,"nposile reinror,ed with CVI> SiC Iilaments (1\ VCO SC5-(,). The inhol11ogenl'ous structure of
the tiner is sl1l>wn 10 inlhlenl:C the slress distrihutlon <lml the composite c1asti, properties.

INTRO[}l!( 'Tl<)N

1\ recursin: clastic solution method can be outlined for uni;lxialcomposites similar to the
W<lY in which lhe composit(;s arc processed. 1'h(; fib(;r bundles in a colllposit(; arc waled
prior to the inlroduclion of the matrix rnat(;rial. If mulliple coatings arc used. then e<lch
layer m<lY be introduced at a dilii.:rent temperature; the linal step being the processing of
the m<ltrix <It its own processing t(;mperature.

In general. the microslresses arc non zero within the multiple coatings at the matrix
prOl:essing temperalure. Therd'ore. a single composite th(;rmal scI t(;mperalur(; may not
(;xist for all the l.;onsliluents. 1'h(; stress distribution becomes even more complex when
intrinsic stresses arc introduced during manufacturing. Deposition stresses can arise from
('VD. PVD or plasma-spraying processes.

The approach in this paper is as follows, Each coating layer is approximated as a
hollow cylinder. the innermost liber being solid, We begin with the innermost two cylinders
and then move outwards. while replacing the coating and the liber assembly underneath
with an equivalent homogeneous transversely isotropic solid cylinder <It each st(;P (Figs I
and :!). The clrective elastic properties of this equivalent cylinder arc calculated from the
well knl)Wn expressions in the literature (Christensen. 1979; Hashin. 1979) which arc given
for a two-phase composite, This process is repeated until all the coatings arc assembled
into the main fiber. Th(; final step is th(; addition of the matrix.

I\lkr this r(;plaC(;menl procedure. the stress determination problem for multiple coat­
ings is essenlially reduced to the probl(;m of a single homogeneous tr;\Ilsvcrscly isotropic
liber. The boundary conditions on the matrix govern the stresses in the matrix and the
effective stresses <lnd the dfective displacements in the fibers. The elli:ctive stresses and the
effective displacements arc defined only for the equivalent homogeneous cylinder: however.
the resulting interface stress and the displacement values are actual quantiti(;s and act as
boundary conditions for the next concentric cylinder assembly underneath. Th(; matrix
layer is ignored for the next solution step. beeuuse its elrect is built into the boundary
conditions. In this manner. the analysis progresses inwards until the innermost fiber is
utilized. Thus. all microstresses and micro-displucements are calculated.
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Fig. I. The lihcr is composed of N concentric layt'rs. The matrix is approximated as a cylindrical
jadet around the liner ,lOll mnnhcred /Ii + I. The ctfective radius r" I for matrix is calculated from
(31. Layer i is free of residual strt'ss at temperature T, in th~, ansence of lhe outCf lavers. The

inncrmost ellre is numhcred I. -
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Fig. 2. Delerminatillllofthe clli:ctive dastic constants in a recursive manner involves thc replacement
of lhe illller layers (shaued region) wilh all equivalenl homogeneous transversely isotropic tiher and

suhsequelltly the auditioll of 'lI1other layer.

IlACKGROUND

The derivation of elasticity solutions for concentric cylinders is straightforward. A
four-concentric-cylinder model is presented by Mikata and Taya (1985) for axisymmetric
deformations. The four-cylinder model in Mikata and Taya (1985), together with a two­
cylinder model, are used in Mikata et al. (1987) to determine the thermal residual stresses
at two different steps during the fabrication of a Ni-coated carbon fiber composite. Some
typographical errors in Mikata and Taya (1985) are corrected in Mikata et al. (1987). The
solution for pure shear loading of two concentric cylinders is given by Christensen (1979),
assuming unit shear loading of the composite at infinity. The solution in Christensen
becomes valid for transversely isotropic constituents, if we make the following slight change
in the definition of the elastic constants:

r/ = I +2JI~)/K~J (I a)

rIm = I +2JI:1.m/K~'m (I b)

rlr = I +'2JI:1.f/K:,(. ( Ie)

The notation in (I a)-( Ie) is that of Christensen (1979) and is diITerent than that of this
paper. The quantities rl, rim and r/r are the clastic constants of the composite (outer cylinder),
the matrix (middle layer) and the fiber (inner core) respectively, and appear in expression
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(3.1~) in Christensen for the in-plane shear modulus. The single-valued transverse shear
modulus in Christensen is derived for composites made with isotropic constituents. The
extension to the case of the transversely isotropic constituents is done by simply redefining
the elastic constants 'I, 'If and '1m as done in (I a)-(Ic).

Two recent papers by Pagano and Tandon (1988. 1989) present quite general non­
axisymmetric solutions for an assembly of three concentric cylinders. The solutions in
Pagano and Tandon are based on Pagano's original paper (1972).

A multiple-coated uniaxially aligned fiber composite has five independent effective
elastic constants and two linear thermal expansion coefficients, provided each phase is either
isotropic or transversely isotropic with its axis aligned along the fiber direction. Exact
predictions for the four elastic constants ofa two-phase composite. namely the axial Young's
modulus E"'. the axial Poisson's ratio 1'''. the axial shear modulus C'. the transverse bulk
modulus k, are given by Christensen (1979) for isotropic constituents (with reference
to other literature) and by Hashin (1979) for transversely isotropic constituents.
The expressions for the two effel,tive linear thermal expansion coefficients are given in
Christensen or Hashin for isotropic constituents: however, with some work the reader
can obtain the transversely isotropic case.

Close upper and lower bound values for the remaining fifth elastic constant, narm:ly
the in-plane shear modulus C T

, arc provided by Hashin (1979) for a two-phase composite.
A single valued in-plane shear modulus is given in Christensen (1979) for a two-phase
composite.

The expressions given in the literature for the three effective elastic constants Eo', I_A,

k and the two thermal expansion coclJil'ients can be used etlcctively [(l replace two concentric
cylinders with an equivalent homogeneous solid cylinder. although these expressions were
derived for a two-phase composite where the inner phase is linely dispersed within the outer
layer. The expressions for the remaining two elastic constants, namely the in-plane and the
axial shear moduli (; r and Go'. which arc provided by Christensen (( 1979) and lIashin
((1)71). arc valid only when the inner phase is in the form of finely distributed cylinders.
These expressions arc not accurate ror the replacement of two concentric cylinders with a
homogeneous equivalent. More accurate, but still approximate expressions for the etlcctivc
axial and in-plane shear moduli arc derived elsewhere and will be given hcre ror the recursive
algorithm. It should be noted that the overall torsional shear modulus is dilrerent than the
cflcctive axial shear modulus fllr concentric cylinders. This is discussed in Appendix C or
this paper.

EFFECTIVE ELASTIC CONSTANTS

As mentioned earlier, a uniaxially reinforced composite is considered to be transversely
isotropic with five effective constants and two linear thermal expansion coeflicients. The
axial and the transverse Young's moduli are denoted by E and E r, respectively. The lateral
deformation in the plane of the isotropy is governed by \' when load is applied in the axial
direction, and by \'T when load is applied in the plane of the isotropy. When shear stresses
are applied parallel to the material axis, the governing shear modulus is denoted by C .....
The remaining shear modulus C T governs the response when the shear stresses are applied
in the plane of the isotropy and is related to the Young's modulus ET and the Poisson's
ratio l,r in a manner similar to the isotropic materials. Another elastic constant which is
dependent on the other five independent elastic constants is the transverse bulk modulus k
(not to be confused with the bulk modulus K for isotropic materials) and given by Hashin
(1979)

(2)

For incompressible materials, the transverse bulk modulus k is infinitely large. A
transversely isotropic material possesses two linear thermal expansion coeflicients. The
expansion cocflicicnts in the axial and transverse directions arc denoted by oc" and OCT,

respectively.



The layers are numb\:red. beginning with the innermost tiber (Fig. I). Innermost tiber
is numbered I. the adjacent coating is numbered 2. the next layer 3. etc. : finally the matrix
being numbered .V+ I. Excluding the innermost tiber and the matrix phases. the number
of coatings is ;.Iccordingly .v - I. The outer radius of t.'ach coating layer is denott.'d by r,.

where the subscript i denotes the layer number. Thus. tht.' outer radius of the innermt)st
tiber is rl' An etfcctive radius for the matrix is calculated from the spel:itied matrix volume
fracti~1O r '" ;.IS f~llll)wS :

where r, is the radius of the tlber induding the thickness of all the layers of the multiple
coatings.

In general. a superscript "c" will indicate that the symbol refers to an cffel:tive property.
If a quantity has the superscript "e". such as £;'<. then the subscript i will refer hl the
numhcr of coatings which have been incorporated into that property. On the other hand.
the symbol C' without the superscript "e" refcrs to the material property of the ith layer.

The etfecti'e properties for layer I arc set to be equal to the respectin: properties of
the innermost lih<.:r. For two or more layers. N> I. the etli.:ctive properties arc given helow.
The range of the index i is. i = 2. :V + I. First. we dcfim: a number of quantities fllr
mathematical cnnVenil..'IKl':

The term!: in (4) is thc relative volullle fraction of the (i I )th l:ylinder with respect tll the
it h layer.

Transversl: hulk lllodulus:

k< == k,(k~ 1+(;,')(1 "):J+k;' l(k,·Hi,I)!;
, (k.~ 1+ (i,l)( I ._t;) + (k, ·Hi,1 U;

Axial Young's modulus'

,,\C .,) 'f' ( I f')'.\~' -. ~(\'~ I-\'I -,: -, I

L, = /;., + (I-t;)f/< ,+/; k,+ I <i,"

Axial Poisson's ratio:

(X)

The clfel:tivc axial and the in-plane shear moduli of two l:oncentric solid cylimkrs arc
dcrived by replacing. a concentric qlindcr assembly with an equivalent transversely isotropic
homogeneous qlimlcr embedded in an clastic composite and subjecting the composite to
homogeneous boundary conditions. If the inner phase is finely dispersed in the oUlcr layer.
then the expressions provided hy Christensen (1979) and Hashin ( 1971J) which arc giv..:n in
Appendix B should he uSt:d instead of tht: expressions givl:n below.

Axi,d shear modulus:

Transverse shcar modulus:
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(10)

where the quantities A. B. and C are given in Appendix A in terms of the elastic properties
and volume fractions of the inner and the outer layers. Numerical experimentation with
the expressions in (10) and (A I)-(A 13) shows that the .. +" sign is valid when the inner
phase is stitTer (,.,~ ~ I. C!': I > Cn and the" -" sign is valid when,.,~ < I. Cr: I < Cr

Thermal expansion coefficients do not pose any ditficulties and are given below.

Axial thermal expansion coetficient :

Ae _ [r£Ae :xAc +(I_r)£A:xA]!£ +(pA+pA)/'G,-Xl - J i 1- 1 I I J I I 1 I r\ J 2

<\ 4( Ae A)j«1 j')(.Ac '«\)GTk<kc [£""--'(1 /')+£<\C VAc "]1£-P t = -71 __ 1 - ~i t - j "i -- (- \. i i fit !.! _ -. f I - I I - I. J.' A

A <I( Tc ",T)j'(l j,)(\,AC VA)GTkkc
P2 = .... ~i - J -:.At i -; j ~ I - f iff - I

q = £A[k,k;. I +C!(k,( I -f) +k;.. If)] +4G!k,k;. I (v{': I - \.~)lf(1-j;), (II)

Transverse thermal expansion coetlicient:

:x,Te = :X,! +(pf +P~)/Cf

p~ = ('X,fe ,-:x;)k; I};[EA(k,+G,r)+4(1-};)k;Cr(v~-v~e,)]

p~ = ('X:~, - ex.;") I:[EA (k, +C ,r )k;« I \.~e I +4( I -Dc;rk,k; I v: v:~ I (\.;\ - \·te
I )

- E;'e I [G,r(k; I v;'e I j; +k;v~(I-f» +k,k;. I (v;\( 1- j;) + \.;"e Ij;)]), (I ~)

For the rcader who is intercstcd in thc propertics of two conccntric cylindcrs only. thc
ahovc complicated sct of suhscripts and supcrscripts can be simplified drastically. if we kccp
in mind that combination of thc suhscript i-I .lI1d the superscript "c" refer to the properties
of the inner cylinder. whereas the suhscript i refers to the propertics of the outer cylinder
(Fig, 2), The relative volume fractionj; in (4) is excluded from this rule,

In the ahovc set of equations we gave the expressions for live independent clastic
constants and two thermal expansion coetlicients. The rem.tining clastic constants are
determined from

£1' =4kG I !(k+m* C'.,

\.1 = (k-m* (it )!(k+m* G I
)

m* = I +4k(\,A)1/EA •

For thc sake of simplicity. wc dropped the superscripts "c" and thc subscripts i,

STRESSES AND DISPLACEMENTS UNDER AXISYMMETRIC LOADING

(l3a)

(13b)

( 131.:)

In the prcvious scction we indicated that the determination of the effective elastic
propcrties is an outwards process, namcly thc successive replacement of the inner concentric
cylinders with their equivalent homogencous solid cylinders until we arrivc at the matrix
ph..tse. The dctermination of the displacemcnts and thc stresses is similar. cxccpt now we
movc inwards. With this recursive approach. wc necd to solve a two-concentric-eylinder
model at each step (Fig, 2). The solution for a two-concentric-cylindcr model can be found
easily: see Lckhnitskii (1981) or Mikata and Taya (1985) among others (sec the latter for
thc governing equations).

The symbol T, denotes the temperature at which the ith layer has been introduced over
the inner concentric cylinders in a stress-free manner. In other words. the ith coating is free
of thermal stresses at the temper.Hure 7:. in the absence of the outer coating layers and
the matrix. The tempcrature T,. c..tlled the "set" temperature. is the zero thermal stress
temperature for the two-concentric-cylinder assembly, From a computational point of view.
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the temperature T, is a convenient reference for the two-concentric-cylinder assembly
from which the displacements can be calculated by applying the displacement boundary
conditions at the interface. However, from a practical point of view, it is confusing to have
the displacements of each layer with respect to a different temperature T, in the final solution
for all the concentric layers. To remedy this situation, (i) we solve the two concentric
cylinder model by assuming that the thermal strains and the displacements are zero at the
reference temperature T,: and (ii) subsequently, we subtract the thermal strains and the
thermal displacements so that all layer strains and displacements are calculated from the
current temperature T. at which the composite is being used. Note that the stresses are not
atfected by this procedure. Combining these two steps. the displacements and the strains
are given below with respect to the current temperature T.

Displacements

II' = D,r+D,/r-II"

II" = 0

II' = D,x-u"

where

II" = :x·'(T-T,)x.

Lower case "t" is used as a supersl:ript to distinguish thermal displal:ements .

.)'trail/S

I;"~ = 11'''' = D 1- :x,\(T- T,).

All shear strain components arc zero.

Stresses

where

CII = E" +4k(v")'

C 1 , = 2b-"

e' = rxT(T- T,)

e' = rx'\ ( T - T,).

(14 )

( 15)

( 16)

( 17)

( IX)

( It)

(20)

(21 )

(22)

(23)

(24)

(25a)

(25b)

(26a)

(26b)

For the sake of simplicity we did not usc superscripts or subscripts in (14)-(26b) to
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distinguish the inner and the outer cylinders. Similar to the previous section. we will
designate the properties of the inner cylinder by a combination of the superscript "e" and
the subscript i-I. The properties of the outer cylinder are denoted by the subscript i. The
new terms in (14) and (16) include the radial and axial thermal displacements III and U<l

respectively. The constants D I • D2 and D) are to be determined from the boundary
conditions. The corresponding sets for the inner and outer cylinders are denoted by D~.i- ,.
D~j_I' Dj.i_l. and D I •i• Dv . D).i. respectively. The elastic constants for the inner and the
outer cylinders C~ !.i-I' C~v- band C II.i• CI~.i are expressed in terms of the previously
defined elastic constants k. £/\ and yA by adding the corresponding superscripts and the
subscripts to (25a) and (25b). Bya similar addition of the subscripts and superscripts the
definition of the inner and the outer cylinder thermal strains ere.. I. e~: I and e~. e~ can be
obtained from (26a) and (26b).

Since the inner cylinder is a solid cylinder. the radial displacement ur:. 1 is zero at the
center where, = O. This condition leads to

D~.;_I = O. (27)

Thus. the inner phase transverse shear modulus G;~ I in (23) and (24) does not enter the
calculations. Continuity of axial displacement at the interface at , = ';_ I.

yields

(28a)

D.I.,= D\; I'

Continuity of radial displacement at , = ',. I.

gives

DIJ,,_,+D~,,/"_' = D'L_,',-"

Continuity of radial stress at , = ';_I.

gives

(28b)

(2941)

(29b)

(30a)

2k, (D I ., -e~) -2G;D2,i/,,2_ 1+ C I2.,(DJ•i - e~)

= 2k~_I (D1.i-1 -er:.> +q 2./- I (D\/_ I -t1: I)' (30b)

Radial applied stress on the outer surface at , = ',.

(3Ia)

gives

(3Ib)

Axial applied stress at infinite distance
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(32a)

As we change the subscript i from S + I to 2. for each i we solve the five equations
(28b). (29bl. (JObl. (JIb) and (32b) for the five unknowns D 11 • D c.,• D", D~.I 1 and
D\, \. This recursive process is initialized by using the applied axial stress 0'"' and the
applied radial stress 0'''' on the composite:

The etfective stresses. the etfeetive displacements and the effective elastic constants of
the inncrmost cylindcr arc the same as the actual quantities. It should be notcd that the
quantity [) '.1 in (2~b) is constant for all tIlt: phases and represents the actual axial composite
strain as measured from the matrix set temperature Tv, I. under combined load and
temperature change.

The recursive method is inl'orporated into a Fortran computer program so that para­
metric studies can be done easily using a range of realistic material property values.

CVI> SiC I'IIIFRS I~ A TITr\~llJM MATRIX COMPOSITF

The material considered in this sectil)n is a titanium matrix composite reinforced with
CVI) SCS·() SiC filaments which are manufactured by Textron (formerly AVeO). The
etfcctive elastic properties of the libel' hy itself as well as those of the composite. together
with the microstresscs and the displacements. are calculated using the recursive cylinder
approach. The matrix material is Ti-6AI-2Sn-4Zr-2Mo. Previous micromechanical work
on this composite has heen detailed by Nimmer et al. (IY~;t». Detailed microstructure of
the SiC lihers is given by Nutt and Wawner (IYX5); further microstructural information
and property measurements are given hy Brun and Borom (\ YXY). Siemers et al. (IYXX)
and DiCarlo (private communication). among others. SCS-6 filaments are produced hy
depositing Ii-SiC onto an approximately 36-Jlm-diameter carhon core up to a diameter of
approximately 137 JInl. The inner carhon core is isotropic and carefully chosen to match
the thermal expansion of the SiC layer; however. the measurements of DiCarlo indicate
that this may not be the case. Nevertheless. the inlluence of the core is not significant
hccause of its relatively small radius and the volume fraction. On top of the SiC layer arc
introduced two layers of carbon-rich silicon carbide linish. each I 1.5 JIm thick. Thus. the
linal diameter of the tiba is approximately 142 JIm. The two outside coatings show variation
from hatch to batch in their composition. The batch studied by Nut! and Wawner (IYXS)
seems to contain pn:fen.:ntially orienll:d pyrolytic cmbon in the lirst layer of the outside
coatings. and the second layer is mostly isotropic C.lrbon. However. other batches include
some SiC on the outside as well as the inner layer (DiCarlo. private communication).

Our primary purpose is to demonstrate the usefulness and the capahilities of the
recursive approach. Exact mechanical properties of the individual layers within the fiber.
especially those of the outer coatings. can only be guessed from the microstructural obser­
vations. Recause of the lack of proper material data the properties used in this section
represent the best guess of this author and should be used with caution. Parametric studies
(this will not be done here) can be done using a range of realistic material property values
in order to gain some insight.
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Fig. J. The strm:ture of the CVO SiC liner. (a) Cwss section of Ihe fiber wilh c'lrbon-rich coatings.
(b> The compl'silion of the e.\ternal coating from DiCarlo (private cOll1mulm;alion). Thl' ratio I,f
SI III C in Ihe outer lihl'r layer is plolled against the radial distance from the external surl;lce of the

liner. The idcali/ed model assumes that the coating region C,Ill ne divided into three layers.

The idealized SiC liher structure is shown in Fig. 3 and the assumed values for the
constituent material properties arc given in Tahlcs I and 2. The material properties arc
assumed to he clastic and constant over the temperature range. Matrix volume fraction
( "",) is 0.72. Because of the presence of pyrolytic carbon we assume that the first of the

Table I. Composile m'lterial Jala

Outer Relative Young's Shear Thermal
raJius volume mod. mod. expansion Set

Conslituents I, fraction E;' (', '1.;' lemp."
i 111m ) l/l (GPa) (Gl'a) (I/CxIO·) (C)

evo I Carbon core IX 50 20.!l 4.5
SiC 2 SiC sheath 6X 0.070 430 17<) 4.5 1300
Finer 3 roat. I 69 0.971 .lOll 41.7 4.7 1300

4 Coat. 2 70 0.971 400 83.3 4.5 1301l
5 Coat. 3 71 0.971 300 20.11 5.0 1300

M'ltrix 6 Ti-6A1-2Sn-4Zr-2Mo 134.2 0.2!l0 95 36.5 11.0 X20

All phases arc isolropic except layers 35 (Sl"C Table 2).
AIII'oisson's ratios arc 0.2. except v, = 0.3 for m;ltrix.
:l.lalrix volume fraetillll is I'," = o.n.

Table 2. Material data for anisotropic layers 3 5 in Table I

Property Layer 3 Layer 4 Layer 5

E; (MPa) 100 200 50
G,' IMPa) 611 1111 40
1:;" 0.2 0.2 0.2
\'; 0.2 0.2 0.2
k,IMPa) 65 132 32
7; (I Cx 10·) 5.0 4.5 5.0
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outer coatings 011 tht: liht:r is slighlly anisolropic wilh It:-- slitl' axis alignt:d in the liher axial
dirt:clioll. Tht: st:colld oula coating is assulllt:d to ht: isotropic alld sorkr lhan SiC bl.:cause
of thl.: prt:senet: of carhon. Tht: third layt:r is similar. t:.\Cl.:pt lhat it is t:vt:11 softl.:r bI.:C1USt: of
tht: higha carhon contt:llt. Thl.: mataial propl.:rlit:s of thc titanium matrix and those of the
SiC are chost:n in thl.: tt:mperaturt: rangt: of 200 400 C. Thl.: sd tl.:ll1peraturt: for tht: titanium
matrix and the lihl.:r is hdow ')00 C. Bt:cause or the possibility or timt:-dt:pt:ndt:nt dt:for­
malion wt: choose a slightly 10wI.:r valllt:. T" = K20 C. We assume thaI the current tem­
perature is T = 20 C and the applit:d radial alld axial slrt:ssCs on the composite are zero.

Tht: dl't:cliw clastic properties listt:d in Table 3 for the successivt: layt:rs are calculated
by using (4) (13c) in a recursive manner. For tht: OUtt:rl1lOst layer (i == 6). which corresponds
to the titanium matrix. the dfectivt: sht:ar moduli G ,;' and (i :,' arc calculatt:d hy using tht:
cxprt:ssions (A 14) (A21) in Appt:ndix B 1'01' composites. rather than thl.: concentric cylinder
relations in (9) and (10). For eomparative purposes, tht: bounds on tht: clastic conslants
arc calcuhlted by the recursive application of expressions (1\22)··(A27). which assume that
the inner phase is finely dispersed within the outer Iayt:r. Thl.:st: bounds arc given in Tabk
4. The calculated values for the in-plane shear moduli from the recursive application of the
Christensen's two-phase shear modulus in (AI5)~(A21) are within the bounds givt:n in

Tahlt: 4.
The radial displact:ments and tht: axial strains are given in Tablt: 5 at T == 20 C and

T = 1020 C at the inner and the outer radii or each layer. The radial. hoop and axial strt:ss
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Fig. 4. The thermal stresses in the SiC fiberjTi matrix composite as a function of the radial distance
from the center of the fiber. The fibers are under axial compression whereas the matrix is in axial
tension at room temperature. (a) Radial stress. (b) Hoop stresses. (c) Axial stresses. The elastic

constants are assumed to remain constant over the temperature range 2(}-1020rtC.

distributions, elf, (199 and (1l\ are plotted as a function of the radial distance r in Figs. 4a­
c. The predicted values for T = I020°C may not be realistic because of the possibility of
time-dependent deformation. The values for the radial displacements ur and the axial strains
in Table 5 have discontinuous values-with the exception of the interface between layers I
and 2; however, this does not mean interface continuity is violated: see (29a). The dis­
continuity arises because the displacements are referred to the current temperature T, which
is different than the "set" or "zero stress" temperatures T, for the layers. The displacements
SAS 29.2- ..
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in Tahle 5 represent the actual displacements that the individual layers will undergo if all
the layers are suddenly decoupled from one another at the current temperature r. These
displacements arc a measure l)f the amount of "shrink lit" hetween the layers at the current
temperature T.

DISCUSSION

The presented recursive method can easily he converted into a computer algorithm to
solve an arhitrary numhcr of concentric cylimkrs. The model can he used to cakulate live
dlt:ctive elastic constants and two thermal expansion codlkients of a uniaxially aligl1l.:d
composite which contains an arbitrary number of coatings on its libers.

The validity of the recursive method can be ascertained in two ways. First, the predicted
results from the rccursive method can be compared with. those obtained from the multiple·
cylinder solutions, such as the ones given in Mikata and Taya (1985) and Pagano and
Tandon (19XR). The sl:cond method involws dividing onl: of thl: layers in an N·layer
compositl: into two sublayers although thl: actual composite contains only N distinct layers.
If the recursive method is to be exact, thl:n the predictcd rcsults which arc obtained with
.V + I fictitious layers must be identical to thosl: obtaincd hy using N layers.

Application or both methods rl:veals tha t the stresses and the displacements calculated
from the recursiw method are eX,lct for axisymmetric deformations that are independent of
thl: axial dirl:ction. Furthermore, three of the clastic constants--the dlcctivc axial Young's
modulus E·\<. thl: axi:tl Poisson's ratio I··'c. and thl: transvl:rse bulk modulus k" and the
two thermal I:xpansion coeflidcnts xAc and x l

< can be calculated exactly for a uniaxial
composite. However, as Tabk 6 shows, the dfective axial and the shear moduli G"< and
G r, cannot be calculated exactly. In Tablc 6, we tried to maximize thl: error which is
rl:presentl:d by the dini.:rence in the values calculated using 6 and 7 layers. Actual error for
the 6.layer composite is probably less. Dividing the layers further increases thl: error.

The expressions for the effective axial and the shear moduli G Ac and G 1< given by (9)
and (10) arc only approximately valid for replacing two concentric cylinders with a single
homogeneous cylinder. These expressions arc derived from a model that consists of two
concentric cylinders embedded in an infinitely large medium that undergoes homogeneous
deformation at infinite distance. All three phases arc assumed to be transversely isotropic.
The expressions given by (9) and (10) arc determined by effectively replacing the inner two
cylinders with a single transversely isotropic homogeneous cylinder. such that the stresses
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Table: 6. Check. for accuracy of recursive me:thod

3 layers 4 layers 5 layers 6 layers 7 layers

GjTc 7-layer 79 78 78 76 44
6-laye:r 114 III III 105 47

G;\c 7-laye:r 15~ 15\ 151 149 51
6-layer 158 157 156 155 52

Layer 2 in Table I is divided into two parts at radius r: = 43 11m. so
that the: composite is regarded to consist of 7 layers. rather than 6. The
material constants for the new layers 2 and 3 are identical. The predicted
results by using 7 layers are identical to those given in Tables 3 and 5.
e,ce:pt the values of the effective elastic constants G;e. G,~e. £;e and v;e.
The estimated values for the effective shear moduli are given above in units
of GPa. The ditTere:nce represents error.

and the displacements in the infinite outer medium remain unchanged. It is expected that
the recursive method will not be exact for general shear loading. since the expressions in
(9) and (10) are derived under special loading situations.

The expressions for the effective axial and the shear moduli GAc and GTe given by (9) and
(10) are different than the expressions (A 14)~(A:!7) derived for composites (see Appendix B)
where the inner phase is assumed to be finely dispersed within the outer layer. In general.
the predicled shear moduli from (9) amI (10) arc higher than the upper bounds for the
composites. when the inner phase is stiffer than the outer phase. When the inner phase is
more compliant. then the shear moduli for the concentric cylinders arc lower than the lower
bounds for a composile (compare the values provided in Table 3 and Table 4). It is possible
to derive upper and lower bounds for the ell'ective axial and the shear moduli GAc and GTe
for the recursive procedure. Ily using the bounds for the ctfective shear moduli it is possible
to obtain limiting solutions for the microstresses and microstrains for nonaxisymmetric
deformations. Recursive application of the lower bound for the shear moduli produces one
limiting solution, whereas the upper bound value produces the other limiting solution. The
dill'erence between the predicted stress and displacements from the two cases represents the
possible maximum error one may commit using the recursive method.

Although shear modulus measurements on the fibers arc performed using torsion tests,
the libers inside a homogeneously deforming composite do not twist around their own axes.
For a homogeneous transversely isotropic fiber, the shear modulus that is measured from
a torsion test is the same as the fiber axial shear modulus GA. However, for an inhomo­
geneous liber the overall torsional modulus that is determined by a simple torsion test does
not correspond to the el1cctive axial shear modulus GAe for the cylinder assembly. The
overall torsional shear modulus for any number of concentric cylinders can be determined
by the recursive application of eqn (A2g) in Appendix C. A relationship between the
effective axial shear modulus GAc and the overall torsional shear modulus is established in
Appendix C in terms of the relative volume fractions and the phase moduli.

The zero stress temperatures T, for individual layers are not necessarily the same as
the temperatures at which the layers arc processed. The stresses that result from the
processing, such as the deposition stresses and the thermal stresses, may be relieved because
of time-dependent creep and relaxation. However, the residual stresses are not necessarily
zero when the material reaches a limit temperature below which stress relaxation does not
occur. If the magnitude of these residual stresses and the value of the limiting temperature
are known. then it is possible to calculate a zero-stress temperature 1: for the layer i.
However, the calculated value may not be a physically realizable temperature, such as above
the melting point or below the absolute zero. The concept of zero-stress temperature,
however, still retains its usefulness for calculating residual stresses in the layers, in the
temperature range in which all constituents in the composite behave elastically.

When the layer properties vary with temperature or applied load-such as plastic
deformation-the recursive method can be applied in an incremental manner for deter­
mining the stresses and the displacements. By successively adjusting the zero-stress tem­
peratures T, at each step, the layer stresses from the previous step can be generated as if
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they were thermal stresses. The amount of initial stresses to be added to the right-hand side
of the stresses in (22)-(24) is adjusted by varying: the terms er and e'. The corresponding
zero-stress temperatures T, are governed by (26a) and (:6b) 0

Some other capabilities of the recursive method include the following::

(I) It can be shown that the recursive method can be applied accurately to concentric
cylinders when there is radial temperature variation. provided that the ddormations
are axisymmetric and independent of the axial direction. Thus. it may not be necessary
to solve the more complex four-concentric-cylinder model presented by \likata and
Taya (1985) for axisymmetric deformations.

(2) Weak interface coupling can be modeled by introducing a thin "soft'" layer in the radial
direction. i.e. by choosing the transverse Young's modulus much smaller than the axial
modulus. E f « E'. The thickness of this thin layer should be chosen such that small
variations in the chosen thickness value do not intluence the stresses in the adjacent
layers appreciably.

(3) The stresses and the displacements presented in this paper correspond to the applied
traction boundary conditions. When homogeneous displacement boundary conditions
are prescribed. then one can use the etTective elastic properties of the composite pre­
scribed in (4)-(10) to calculate the corresponding applied stresses. Subsequently. the
recursive procedure described by eqns (14)-(34) can be applied to calculate the cor­
responding microstresses and the displacements.

(4) The expressions given by (6)-( Dc) for the effective elastic constants ofa two-concentric­
cylinder assembly arc valid when either one of the layers is made from an incompressible
ma terial. Incompressiblc materials arc characterized hy

\'A = 1;'2. \" = I - L' /2E'. I, =J .

With the exception of the transverse bulk modulus k. the expressi\)ns (7) (I.k) for the
etkctive clastic constants predict linite values when the transverse bulk moduli k, or k: I

approach inlinity. The effective transverse hulk modulus for a two-concentric-cylinder
assemhly approaches infinity when both the inner and the outer cylinders arc incompn:ssible.

SU\.l\IARY

The recursive method developed in this paper is capable of determining stresses and
displacements in concentric cylinders untler axisymmetric deformations. when all layers arc
linear elastic and there is interface continuity. Only two concentric cylinders arc solved at
each step. Applied axial and radial load as well as temperature change arc considered. All
the material properties are assumed to he transversely isotropic and uniform over the
temperature range. Thermal stresses are properly accounted for by assuming that the set
temperature is ditkrent for each constituent.

Three elkctive elastic constants ---the axial Young's modulus EA
<, the transverse bulk

modulus k<, and the axial Poisson's ratio \,o'<-and the two thermal expansion coel1icients
etAC and CL

lc can be calculated" exactly tor a uniaxial composite that contains an arbitrary
numher of coatings on its lihers.

The remaining two effective elastic constants, the axial and the transverse shear moduli
C Ac and C Ie cannot be determined exactly from the recursive method. The exact replacement
of two concentric cylinders with a single cylinder is not possible under shear deformation.
Approximate expressions are given in (9) and (10) for the axial and the in-plane shear
moduli in order to replace two concentric cylinders with a single homogeneous cylinder.
Comparison with the overall torsional shear moduli is made in Appendix C. More work is
needed in order to estimate the error involved in using (9) and (10) in a recursive manner
for computing nonaxisymmetrical clastic solutions.

The recursive method has been applied to a titanium matrix composite which is
reinforced with heterogeneous SiC fibers. It is determined that the relatively compliant layer
of carbon-rich external coating on the SiC liher provides a gradual stress gradient across
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the interface. This smooth transition reduces stress concentrations at the fiber matrix
interface. thus preventing fiber failure.
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AI'I'ENDIX A

The <fuantities .-I. B. "nd C givcn in (10) for the etfective transverse she"r modulus (i,'" "re delined below in
terms of the elastic properties and the volume fr"ctions of the inner "nd the outer layers.

'I, = G,rlk, (:\4)

'12 = k:- ,Ik, (AS)

A, = (,,: -1)(2+8", + 7'1; +'I:(2+3",l+/.(Il,,~+ Ill,,: -8", -2+,,:(6,,: + 13'1;+", -2»

+1,:(,,:(5,,; + 13", +4) +2,,:(,,: -3) +4(", + 1).) -1,'",(,,:{6,,; + 7'1, +5) +2",{2"i+", + 1»

+/'·";("l-I)(I + 2",)1 +2(", + I)l( 1+2",){I-/.+2/,:) (:\7)

A: = (,,: - 1)((1 + 2",)( 1+ 3", +,,:) +/.(1 + 2", )(4,,: + 6,,; -6", - 2 +,,:(2,,; + 3", - 2»

+li(IO,,; + 5", + 1+',: +4" ,,,: +4", (2", +'1:)('" + I):) -I,'", (1 + 2", )(2",'1l +,,: - 2",)1

+(1_/.)l(", + I){I +2",)2 (A8)

Ilu = ",(":-I){,,, +,,:){1-/,:) (A9)

8, = 7,,; + 10",,,: -~,,;(,,:-I) -"i(3"i +2", -4) +2/.(", +":)(2",,,: -5", -3,,: +2";("l-I)1

+~/i('" +,,:)(,,:(\ +t,,) + ,Ii(,,: - 1)1 - 2/;'",(,,: - 1)(", +,,:)( 1+ 2",) +1,·,,;(,,: -1): (A 10)
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B, 1'1, +21/,)[-111/, -'!:l-('I, -I ;(t/, +21/;)J-/",/: +2'11)[1'/, -I)I}I/, -2'1;) 21'1, -'I,ll

+(:r'l: -2'1'('1, 11j[}'I,--l'I;-21/: +}'I,'I:) -/,''1,('1: 11['1, +2'1,''1, -Ill (.~II)

(~12)

IAUI

APPENDIX B: THE EFFECTIVE AXIAL AND IN-PLANE SIlEAR :\IODULl WHE:-': I:'\:-':ER PIIASE
IS FI:-':ELY DISPERSED

When the inner phase is linely distributed within the outer layer then eqns (9) and ( 10) (I Jh I for the shear
moduli sh,luld be replaced hy the expre,sions provided fr~)m Christensen (1979) and Ilashin ( 1979) I'M the effective
shear moduli of two-phase comp,,,,tes,

(i' (j;'( I -J:) + G,",I 1+ /)
'(;,'(1 H·G,"',(1-I,)'

Transverse shear nwdulus from Chri,tens<'n I 1'l7'l)'

tAI5)

where

,./ ,1/,(1 1,)'('" 1)(1" ,'/,) ,1//,1/, 111:11, ('1,'1, 1I,;/:I1/,'1,(tI, I) (tI,II, ~ iii

II ",1/:(1 -/;)'(1" I)(t/I 1"1:)' \[1/,1/1 ,(tl, 1)/,' I1I(t1 , 1)(//,1'/:) 2(11,'/, ",)/,'1

I
; ) (1/, IIHI], lIl'i, H/, r{'1,'I, '1.')/'" (,\17)

'I, 1+2(;,' h"

(,'\ IX)

IAI'l)

(A2(J)

tA21)

The recursive expression for the single-valued transverse shear modulus in (AI5) (,·\21) is the nwdilied ver,ion
of the expression pnwided hy Christensen. as explained previously (sec I I" c)), We extracted the phy'lcally
meaningful root from the quadratic glvcn in Christensen in order to arrive at (A 15), The v;l!ue uf G,f. provided
by (AI)) is always in between the upper hound value G,ldl and the lower hound G,'c' (flashin, 197'.1) which arc
given below, A superscript "II" is used to denote an upper hound. and "L" hI ,lenote ;1 lower bound. Both the
upper and the lower hounds G :d' and (;:d are initially set to the in·pIane shear n1<ldulus (j; of the innermost
core.

('<I,H' (i)
If k: , > k,; G,T": > G;, then

2(((i,"", - (1,' Ilk, + (i; I
I + , '" /." I I') /. '( , I) (" 'd (' f

_(,,(~,+(J,)+( -'(~'+_" (', ,-"I

(l +/i,){;
I'" .'-l(I'" J{I;(l---:lY)I ., . 7./,'+1

\A22)
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i'+P,
p = ,'-I ;

Cllse(ii)
If k~ I < k,; G,f<~ < G;. the:n

'01' T _ I 1j,(G;~':-G,T)(k,+G,f)

G, G, - +'G'(k+GT,+(I_}')(k+'Gf)(GTd'_Gf,
- I I' I I. - I 1- I I

1+ (I+P,){, .

_j, (1 3P;O - j,) :)
p , + I' P,x 1- ,

113

(:\14)

(:\15)

(:\16)

The quantity P, is given in (:\14). The ne:w values for the quantitie:s x. p. P:. " are calculate:d from (A14) by
re:placing the: superscript .. H" with" L", Thus. the: ne:w values of I and P2 are governe:d by

(A17)

APPENDIX C: TORSIONAL SHEAR MODULUS FOR TWO CONCENTRIC CYLINDERS

For the: replacement of two concentric cylinders with a single transversely isotropic homogeneous cylinder.
the dfective: a:'lial shear modulus G," is calculated from (9). However. the calculated G:' is not the overall shear
modulus that can be me.lsured from a torsion lest performed on the two-cylinder assembly. The measured torsional
shear modulus would be identical to the a:'lial shear modulus G:' for a solid homogeneous cylinder. Assuming
shear strain wntinuily at the interface. the overall torsional shear modulus for two concentric cylinders is given
hy

The dfel'live a:'lial S!ll:ar moduli for the innermost tiber (i = I) arc the "lIlle ami equal to the a:'lial shear modulus
(If malerial I.

(A11))

Using the measured value of (j~~r"",,,,,., frolll a lorsion test on an N·layered cylinder. the torsional shear moduli
(l,'f"",,,,,., fur successive 1Illllillcrs of inner layers i can Ilc c'llculated from (A2M) in a recursive manner. Upon
rea<:hing the innermost layer (i " I). the r~'<:ursive rcl'ltionship in (I)) is used to calculate lhe ell\.'<:tive a:'lial she'lr
moduli (l;'< for any numllcr of layers i. Wilh this procedure. the effective axial shear moduli <:an Ilc <:alculah:d
from e:'lperimentally ohserved valucs of the overall torsional shear moduli.

When only two eon<:entrie cylinders arc pn:sent (N = 2,. then the rcl.llionship Ilctween Ihe clli:<:tive a:'lial and
Ihe torsional shear moduli is govcrned by

CAe li""
J:.- ... :.,,,,,,,~,,., = ')/ '( I f) - r

G'~ -G'~ - Ii + I •
(A30)

where /; dcnotes the volume fra<:tion of the inner (i = I, cylinder. and G~ and G~ arc the axial shear moduli filr
the inner and the outer <:ylinders. resp~'<:tivcly. The right-hand side of (A30) vanishes lilr); = 0 and}; = I. and
assumes a maximum value 01'0.41 at}; = 0.46.


